Float Switch Buoyancy Calculations

Note: When calculating buoyancy for liquids other than water, make adjustments in step 3.

5.5' Float (Non Weighted)

1. Weight of the $5.5^{\prime \prime}$ Float in air $=\mathbf{1 . 1 2}$ pounds
2. Volume of the displaced liquid $=\mathbf{8 7 . 1 2}$ cubic inches
$4.189 r^{3}$ Where r is float radius in inches
(4.189) $(2.75)^{3}=87.12$ cubic inches
3. The weight of the displaced volume of liquid $=\underline{\mathbf{3} .138}$ pounds

Water $=62.248$ pounds/cubic foot
$62.248 / 12^{3}=$ pounds/cubic inch $=0.03602$ pounds/cubic inch
(0.03602 pounds/cubic inch) $(87.12$ cubic inches) $=\mathbf{3 . 1 3 8}$ pounds
4. (Weight of the displaced volume of liquid) - (weight of the float) = total net buoyancy
(3.138 pounds $)-(1.12$ pounds $)=\underline{\mathbf{2} .018}$ pounds, total net buoyancy

4.5' Float (Non Weighted)

1. Weight of the $4.5^{\prime \prime}$ Pipe Mount Float in air $=\mathbf{0 . 3 5}$ pounds
2. Volume of the displaced liquid $=\mathbf{5 7 . 7 3}$ cubic inches
3. The weight of the displaced volume of liquid $=\underline{\mathbf{2} .08}$ pounds

Water $=62.248$ pounds/cubic foot
$62.248 / 12^{3}=$ pounds/cubic inch $=0.03602$ pounds/cubic inch
(0.03602 pounds/cubic inch) (57.73 cubic inches) $=\underline{\mathbf{2} .08}$ pounds
4. (Weight of the displaced volume of liquid) - (weight of the float) = total net buoyancy
(2.08 pounds $)-(0.35$ pounds $)=\underline{1.73}$ pounds, total net buoyancy

The above calculations compare the 5.5" Stainless Steel Float Switch to the 4.5" Float Switch. The larger 5.5" float displaces over 40\% more liquid and has over 15\% more net buoyancy.

App4Water
2 Forest Drive
Catonsville, MD 21228
410.744 .9040 phone
410.744.6062 fax
www.App4Water.com

